A study on the surface quality of the 3D printed parts caused by the scanning strategy

Author:

Han Jitai,Ge Yanan,Mao Yuxin,Wu Meiping

Abstract

Purpose The purpose of this paper is to mainly focus on the relationship between the scanning strategy and surface quality. Surface quality, including surface roughness and flatness, is important for printed parts. So this paper optimizes the surface quality by changing the scanning strategy. Design/methodology/approach This paper is based on the phenomenon after the printed parts. A clear trend can be seen that the surface roughness on the side face shows a clear zigzag shape, so an optimized scanning strategy is used. Surface roughness in measured in macrostructure first by Mitutoyo and the flatness is measured by Hexagon Metrocogy. After that, microstructure on the side face is seen by RTEC to explain this phenomenon. Findings The surface quality on the side face shows a significant optimize by changing the scanning strategy. The surface quality on the positive face has some optimization to some degree. Originality/value This paper determines the relationship between the surface roughness on the side face and the scanning strategy. Few studies focus on the surface roughness, especially on the side face. Some studies try to optimize the surface roughness on the positive face. However, researchers always neglect the surface roughness on the side face. 2. This paper measures not only the surface roughness, but also the flatness. Surface roughness has a significant impact on the surface quality. However, it still has some limitations. Flatness is also measured to make this paper more representative. 3. This paper explains why scanning strategy can affect the surface quality. These images explain the research better and not just at the theoretical level.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3