Author:
Zhao Donghua,Li Tianqi,Shen Beijun,Jiang Yicheng,Guo Weizhong,Gao Feng
Abstract
Purpose
The purpose of this paper is to design and develop a rotary three-dimensional (3D) printer for curved layer fused deposition modeling (CLFDM), and discuss some technical challenges in the development.
Design/methodology/approach
Some technical challenges include, but are not limited to, the machine design and control system, motion analysis and simulation, workspace and printing process analysis, curved layer slicing and tool path planning. Moreover, preliminary experiments are carried out to prove the feasibility of the design.
Findings
A rotary 3D printer for CLFDM has been designed and developed. Moreover, this printer can function as a polar 3D printer for flat layer additive manufacturing (AM). Compared with flat layer AM, CLFDM weakens the staircase effect and improves geometrical accuracy and mechanical properties. Hence, CLFDM is more suitable for parts with curved surfaces.
Research limitations/implications
Double extruders have brought improved build speed. However, this paper is restricted to complex process planning and mechanical structures, which may lead to collisions during printing. Meanwhile, the rotation range of the nozzle is limited by mechanical structures, affecting the manufacturing capability of complex curved surfaces.
Originality/value
A novel rotary 3D printer, which has four degrees of freedom and double extruders, has been designed and manufactured. The investigation on the prototype has proved its capability of CLFDM. Besides, this rotary 3D printer has two working modes, which brings the possibility of flat layer AM and CLFDM.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献