Multi-robot navigation based on velocity obstacle prediction in dynamic crowded environments

Author:

Chen Yimei,Wang Yixin,Li Baoquan,Kamiya Tohru

Abstract

Purpose The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance. Design/methodology/approach This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations. Findings The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics. Originality/value In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Publisher

Emerald

Reference21 articles.

1. A PSO-Optimized reciprocal velocity obstacles algorithm for navigation of multiple mobile robots;IAES International Journal of Robotics and Automation (IJRA),2014

2. Cooperative collision avoidance for nonholonomic robots;IEEE Transactions on Robotics,2018

3. Reciprocal collision avoidance for multiple car-like robots,2012

4. Optimal reciprocal collision avoidance for multiple non-holonomic robots,2013

5. V-RVO: decentralized multi-agent collision avoidance using Voronoi diagrams and reciprocal velocity obstacles,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3