A cubic B-spline quasi-interpolation method for solving two-dimensional unsteady advection diffusion equations

Author:

Mittal Ramesh Chand,Kumar Sudhir,Jiwari Ram

Abstract

Purpose The purpose of this study is to extend the cubic B-spline quasi-interpolation (CBSQI) method via Kronecker product for solving 2D unsteady advection-diffusion equation. The CBSQI method has been used for solving 1D problems in literature so far. This study seeks to use the idea of a Kronecker product to extend the method for 2D problems. Design/methodology/approach In this work, a CBSQI is used to approximate the spatial partial derivatives of the dependent variable. The idea of the Kronecker product is used to extend the method for 2D problems. This produces the system of ordinary differential equations (ODE) with initial conditions. The obtained system of ODE is solved by strong stability preserving the Runge–Kutta method (SSP-RK-43). Findings It is found that solutions obtained by the proposed method are in good agreement with the analytical solution. Further, the results are also compared with available numerical results in the literature, and a reasonable degree of compliance is observed. Originality/value To the best of the authors’ knowledge, the CBSQI method is used for the first time for solving 2D problems and can be extended for higher-dimensional problems.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3