Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet

Author:

Waini Iskandar,Ishak Anuar,Pop Ioan

Abstract

Purpose The purpose of this paper is to examine the axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable biaxial stretching/shrinking sheet. Design/methodology/approach In this study, 0.1 solid volume fraction of alumina (Al2O3) is fixed, then consequently, various solid volume fractions of copper (Cu) are added into the mixture with water as the base fluid to form Cu-Al2O3/water hybrid nanofluid. The hybrid nanofluid equations are converted to the similarity equations by using the similarity transformation. The bvp4c solver, which is available in the Matlab software is used for solving the similarity equations numerically. The numerical results for selected values of the parameters are presented in tabular and graphical forms, and are discussed in detail. Findings It is found that dual solutions exist up to a certain value of the stretching/shrinking and suction parameters. The critical value λc < 0 for the existence of the dual solutions decreases as nanoparticle volume fractions for copper increase. The temporal stability analysis is performed to analyze the stability of the dual solutions, and it is revealed that only one of them is stable and physically reliable. Originality/value The present problem is new, original with many important results for practical problems in the modern industry.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference72 articles.

1. Three-dimensional MHD flow over a shrinking sheet: analytical solution and stability analysis;Chinese Physics B,2017

2. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet;Journal of Magnetism and Magnetic Materials,2016

3. Mixed convective non-linear radiative flow with TiO2-Cu-water hybrid nanomaterials and induced magnetic field;International Journal of Numerical Methods for Heat and Fluid Flow,2019

4. A review of thermal conductivity of various nanofluids;Journal of Molecular Liquids,2018

5. A review of thermophysical properties of water based composite nanofluids;Renewable and Sustainable Energy Reviews,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3