Hiring schedule optimization at the Surrey fire department

Author:

He Bolong,Mitrovic-Minic Snezana,Garis Len,Robinson Pierre,Stephen TamonORCID

Abstract

PurposeThe Surrey (British Columbia, Canada) fire department has an annual cycle for hiring full-time firefighters. This paper optimizes the timing of the annual hiring period. A key issue is handling workplace absences, which can be covered by overtime cost or full-time hires.Design/methodology/approachShort-term and long-term absences patterns are analyzed according to season and age cohorts of the firefighters. These are then used in both an explanatory and time series model to predict future absences. The hiring schedule is optimized based on these predictions and additional constraints.FindingsThe current practice fares well in the analysis. For the time period studied, moving to earlier hiring dates appears beneficial. This analysis is robust with respect to various assumptions.Originality/valueThis is a case study where analytic techniques and machine learning are applied to an organizational practice that is not commonly analyzed. In this case, the previous method was not much worse than the optimized solution. The techniques used are quite general and can be applied to various organizational decision problems.

Publisher

Emerald

Subject

Management Science and Operations Research,Safety Research

Reference24 articles.

1. A new look at the statistical model identification;IEEE Transactions on Automatic Control,1974

2. Brownlee, J. (2016), “How to check if time series data is stationary with Python. From the on-line tutorial”, available at: https://machinelearningmastery.com/time-series-data-stationary-python/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3