Predicting thrust of aircraft using artificial neural networks

Author:

Yildirim Dalkiran Fatma,Toraman Mustafa

Abstract

Purpose The purpose of this study is to make artificial neural network (ANN)-based prediction about thrust using the flight control parameters of aircrafts. Design/methodology/approach In today’s transportation, airplanes have an important place because of their safety, quality and speed. One of the most important parameters affecting the secure flying of aircrafts is the thrust value of aircraft engines. Determining the optimum thrust value should be investigated. If thrust value is less than optimum level, the flight safety runs a risk. Otherwise, fuel consumption goes high and some unwanted vibrations occur that cause uncomfortable flight. In this study, multi-layer perceptron ANNs, which are one of the intelligent optimization methods and frequently used in the literature, are preferred to predict the optimum thrust value during take-off, cruise and landing. The actual flight data, which is taken from the black box of an Airbus A319 aircraft, is used to train ANN models using back propagation algorithms. Velocity, altitude and ambient temperature values of the aircraft are selected as inputs and the thrust value is selected as output. During the training process of ANN, eight different training algorithms with different structures are used to figure out optimum ANN model with minimum error. Findings Different ANN models were trained using eight different training algorithms. The ANN model with minimum error has multi-layer perceptron structure, which is trained using Levenberg–Marquardt (LM) algorithm. Research limitations/implications To obtain the ANN structure with minimum error training, process takes more than a day depending on the capacity of a computer for LM training algorithm. But after training process, the trained ANN model produces sufficient output in a few milliseconds. Practical implications Totally 15,670 input-output data sets are obtained from an Airbus A319 aircraft. 12,889 of them are used as training data and the rest of the data sets, selected randomly are used as test data. Test data sets are never used in training phase, and the obtained results show that the ANN model successfully predicts thrust value using unseen input data. Social implications The ANN could be used as an alternative method to predict other flight control parameters of aircrafts. Originality/value To the best of authors’ knowledge, this study is the first example in literature to predict the thrust value of the aircraft using ANN.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. ANN-based failure modeling of classes of aircraft engine components using radial basis functions;Ekspolatacja i Niezawodnosc – Maintenance and Reliability,2019

2. Anderson, D. and McNeill, G. (1992), “Artificial neural networks technology, F30602-89-C-0082, a DACS (data & analysis center for software) state-of-the -art report, New York, NY”, available at: http://andrei.clubcisco.ro/cursuri/f/f-sym/5master/aac-nnga/AI_neural_nets.pdf

3. ABC and DE algorithms based fuzzy modeling of flight data for speed and fuel computation;International Journal of Computational Intelligence Systems,2018

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3