Author:
Niu Junjie,Sang Weimin,Zhou Feng,Li Dong
Abstract
Purpose
This paper aims to investigate the anti-icing performance of the nanosecond dielectric barrier discharge (NSDBD) plasma actuator.
Design/methodology/approach
With the Lagrangian approach and the Messinger model, two different ice shapes known as rime and glaze icing are predicted. The air heating in the boundary layer over a flat plate has been simulated using a phenomenological model of the NSDBD plasma. The NSDBD plasma actuators are planted in the leading edge anti-icing area of NACA0012 airfoil. Combining the unsteady Reynolds-averaged Navier–Stokes equations and the phenomenological model, the flow field around the airfoil is simulated and the effects of the peak voltage, the pulse repetition frequency and the direction arrangement of the NSDBD on anti-icing performance are numerically investigated, respectively.
Findings
The agreement between the numerical results and the experimental data indicates that the present method is accurate. The results show that there is hot air covering the anti-icing area. The increase of the peak voltage and pulse frequency improves the anti-icing performance, and the direction arrangement of NSDBD also influences the anti-icing performance.
Originality/value
A numerical strategy is developed combining the icing algorithm with the phenomenological model. The effects of three parameters of NSDBD on anti-icing performance are discussed. The predicted results show that the anti-icing method is effective and may be helpful for the design of the anti-icing system of the unmanned aerial vehicle.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献