Investigation of heat generation/absorption on natural convection flow in a vertical annular micro-channel

Author:

Jha Basant Kumar,Aina Babatunde

Abstract

Purpose The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid. Design/methodology/approach Exact solution of momentum equation is derived separately in terms of Bessel’s function of first and second kind for heat-generating fluid and modified Bessel’s function of first and second kind for heat absorbing fluid. Findings During the course of numerical computations, it is found that skin friction and rate of heat transfer at outer surface of inner cylinder and inner surface of outer cylinder increases with the increase in heat generation parameter while the reverse trend is found in the case of heat absorption parameter. Originality/value In view of the amount of works done on natural convection with internal heat generation/absorption, it becomes interesting to investigate the effect of this important activity on natural convection flow in a vertical annular micro-channel. The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference36 articles.

1. Thermal behavior of a stagnant gas confined in a horizontal microchannel as described by the dual-phase-lag heat conduction model;International Journal of Thermophysics,2004

2. Mixed convection in a vertical microchannel;ASME Journal of Heat Transfer,2007

3. Mixed convection in a vertical microannulus between two concemtric microtubes;ASME Journal of Heat Transfer,2009

4. Post-accident heat removal – part I: heat transfer within an internally heated non boiling liquid layer;Nuclear Science and Engineering,1976

5. Natural convection flow in a vertical micro-channel with heated at uniform heat flux;International Journal of Thermal Science,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3