Assessing and predicting the quality of peer reviews: a text mining approach

Author:

Meng Jie

Abstract

PurposeThis paper aims to quantify the quality of peer reviews, evaluate them from different perspectives and develop a model to predict the review quality. In addition, this paper investigates effective features to distinguish the reviews' quality. Design/methodology/approachFirst, a fine-grained data set including peer review data, citations and review conformity scores was constructed. Second, metrics were proposed to evaluate the quality of peer reviews from three aspects. Third, five categories of features were proposed in terms of reviews, submissions and responses using natural language processing (NLP) techniques. Finally, different machine learning models were applied to predict the review quality, and feature analysis was performed to understand effective features.FindingsThe analysis results revealed that reviewers become more conservative and the review quality becomes worse over time in terms of these indicators. Among the three models, random forest model achieves the best performance on all three tasks. Sentiment polarity, review length, response length and readability are important factors that distinguish peer reviews’ quality, which can help meta-reviewers value more worthy reviews when making final decisions.Originality/valueThis study provides a new perspective for assessing review quality. Another originality of the research lies in the proposal of a novelty task that predict review quality. To address this task, a novel model was proposed which incorporated various of feature sets, thereby deepening the understanding of peer reviews.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference43 articles.

1. Multiple instance learning networks for fine-grained sentiment analysis;Transactions of the Association for Computational Linguistics,2018

2. PaRe: a paper-reviewer matching approach using a common topic space,2019

3. Peer grading the peer reviews: a dual-role approach for lightening the scholarly paper review process,2021

4. Quantifying the quality of peer reviewers through Zipf’s law;Scientometrics,2016

5. Closed versus open reviewing of journal manuscripts: how far do comments differ in language use?;Scientometrics,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3