Robust adaptive control of nonlinear dynamic systems using hybrid sliding mode regressive neural learning technique

Author:

Anh Ho Pham HuyORCID,Dat Nguyen TienORCID

Abstract

Purpose The proposed Sliding Mode Control-Global Regressive Neural Network (SMC-GRNN) algorithm is an integration of Global Regressive Neural Network (GRNN) and Sliding Mode Control (SMC). Through this integration, a novel structure of GRNN is designed to enable online and. This structure is then combined with SMC to develop a stable adaptive controller for a class of nonlinear multivariable uncertain dynamic systems.Design/methodology/approach In this study, a new hybrid (SMC-GRNN) control method is innovatively developed.Findings A novel structure of GRNN is designed that can be learned online and then be integrated with the SMC to develop a stable adaptive controller for a class of nonlinear uncertain systems. Furthermore, Lyapunov stability theory is utilized to ensure the hidden-output weighting values of SMC-GRNN adaptively updated in order to guarantee the stability of the closed-loop dynamic system. Eventually, two different numerical benchmark tests are employed to demonstrate the performance of the proposed controller.Originality/value A novel structure of GRNN is originally designed that can be learned online and then be integrated with the sliding mode SMC control to develop a stable adaptive controller for a class of nonlinear uncertain systems. Moreover, Lyapunov stability theory is innovatively utilized to ensure the hidden-output weighting values of SMC-GRNN adaptively updated in order to guarantee the stability of the closed-loop dynamic system.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference32 articles.

1. Nonlinear multi-input multi-output system identification using neuro-evolutionary methods for a quad-copter,2017

2. Adaptive neural altitude control and attitude stabilization of a hexacopter with uncertain dynamics,2019

3. Bartolini, G. (2008), “Modern sliding mode control theory: new perspectives and applications”, in Lecture Notes in Control and Information Sciences Modern Sliding Mode Control Theory, Springer.

4. Generalized regression neural network in modeling river sediment yield;Advances in Engineering Software,2006

5. Improving classification performance of sonar targets by applying general regression neural network with PCA;Expert Systems with Applications,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3