Selection of optimal noise filtering technique for guided waves in diagnosis of structural cracks

Author:

Sharma Ambuj,Kumar Sandeep,Tyagi Amit

Abstract

Purpose The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health assessment methodology, very good extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities. Design/methodology/approach Filtration of time-frequency information of multimode Lamb waves through the noisy signal is investigated in the present analysis using matched filtering technique and wavelet denoising methods. Using Shannon’s entropy criterion, the optimal wavelet function is selected and verification is made via the analysis of root mean square error of filtered signal. Findings The authors propose wavelet matched filter method, a combination of the wavelet transform and matched filtering method, which can significantly improve the accuracy of the filtered signal and identify relatively small damage, especially in enormously noisy data. Correlation coefficient and root mean square error are additionally computed for performance evaluation of the filters. Originality/value The present study provides detailed information about various noise filtering methods and a first attempt to apply the combination of the different techniques in signal processing for the structural health monitoring application. A comparative study is performed using the statistical tool to know whether filtered signals obtained through three different methods are acceptable and practicable for guided wave application or not.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference18 articles.

1. Rapid long range inspection of chemical plant pipework using guided waves,2000

2. The use of Lamb waves for the long range inspection of large structures;Ultrasonics,1996

3. Biorthogonal bases of compactly supported wavelets;Communications on Pure and Applied Mathematics,1992

4. Structure damage localization with ultrasonic guided waves based on a time-frequency method;Signal Processing,2014

5. Dallal, J. (2012), “Correlation coefficients”, available at: www.jerrydallal.com/lhsp/corr.htm

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3