An upper-bound finite element solution for rolling of stainless steel 304L under warm and hot deformation conditions

Author:

Pourabdollah P.,Serajzadeh S.

Abstract

Purpose The purpose of this paper is to investigate the thermomechanical behavior of stainless steel AISI 304L during rolling at elevated temperatures. Design/methodology/approach Two-dimensional finite element analysis together with the upper-bound solution were used for predicting temperature field and required power in warm and hot rolling operations. The required power and heat of deformation were estimated employing an upper-bound solution based on cylindrical velocity field and at the same time, temperature distributions within the rolling steel and the work rolls were determined by means of a thermal finite element analysis. To consider the effect of flow stress and its dependence on temperature, strain and strain rate, a neural network model was used and combined with the thermal and mechanical models. Finally, the microstructure of rolled steel was studied and the effect of rolling conditions was justified employing the predictions. Findings The results have shown that the predicted temperature variations were in good agreement with the experiments. Moreover, the model was shown to be capable of determining the effects of various rolling parameters such as reduction and rolling speed with low-computational cost as well as reasonable accuracy. Originality/value A combined upper-bound finite element analysis was developed to predict the required power and temperature field during plate rolling while the model can be employed under both hot and warm rolling conditions.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3