An adaptive Kriging method based on K-means clustering and sampling in n-ball for structural reliability analysis

Author:

Wang JinshengORCID,Cao ZhiyangORCID,Xu GuojiORCID,Yang JianORCID,Kareem Ahsan

Abstract

PurposeAssessing the failure probability of engineering structures is still a challenging task in the presence of various uncertainties due to the involvement of expensive-to-evaluate computational models. The traditional simulation-based approaches require tremendous computational effort, especially when the failure probability is small. Thus, the use of more efficient surrogate modeling techniques to emulate the true performance function has gained increasingly more attention and application in recent years. In this paper, an active learning method based on a Kriging model is proposed to estimate the failure probability with high efficiency and accuracy.Design/methodology/approachTo effectively identify informative samples for the enrichment of the design of experiments, a set of new learning functions is proposed. These learning functions are successfully incorporated into a sampling scheme, where the candidate samples for the enrichment are uniformly distributed in the n-dimensional hypersphere with an iteratively updated radius. To further improve the computational efficiency, a parallelization strategy that enables the proposed algorithm to select multiple sample points in each iteration is presented by introducing the K-means clustering algorithm. Hence, the proposed method is referred to as the adaptive Kriging method based on K-means clustering and sampling in n-Ball (AK-KBn).FindingsThe performance of AK-KBn is evaluated through several numerical examples. According to the generated results, all the proposed learning functions are capable of guiding the search toward sample points close to the LSS in the critical region and result in a converged Kriging model that perfectly matches the true one in the regions of interest. The AK-KBn method is demonstrated to be well suited for structural reliability analysis and a very good performance is observed in the investigated examples.Originality/valueIn this study, the statistical information of Kriging prediction, the relative contribution of the sample points to the failure probability and the distances between the candidate samples and the existing ones are all integrated into the proposed learning functions, which enables effective selection of informative samples for updating the Kriging model. Moreover, the number of required iterations is reduced by introducing the parallel computing strategy, which can dramatically alleviate the computation cost when time demanding numerical models are involved in the analysis.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3