An adaptive resistance and stamina strategy-based dragonfly algorithm for solving engineering optimization problems

Author:

Yuan Yongliang,Wang Shuo,Lv Liye,Song Xueguan

Abstract

Purpose Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization algorithm, named, adaptive resistance and stamina strategy-based dragonfly algorithm (ARSSDA). Design/methodology/approach To speed up the convergence, ARSSDA applies an adaptive resistance and stamina strategy (ARSS) to conventional dragonfly algorithm so that the search step can be adjusted appropriately in each iteration. In ARSS, it includes the air resistance and physical stamina of dragonfly during a flight. These parameters can be updated in real time as the flight status of the dragonflies. Findings The performance of ARSSDA is verified by 30 benchmark functions of Congress on Evolutionary Computation 2014’s special session and 3 well-known constrained engineering problems. Results reveal that ARSSDA is a competitive algorithm for solving the optimization problems. Further, ARSSDA is used to search the optimal parameters for a bucket wheel reclaimer (BWR). The aim of the numerical experiment is to achieve the global optimal structure of the BWR by minimizing the energy consumption. Results indicate that ARSSDA generates an optimal structure of BWR and decreases the energy consumption by 22.428% compared with the initial design. Originality/value A novel search strategy is proposed to enhance the global exploratory capability and convergence speed. This paper provides an effective optimization algorithm for solving constrained optimization problems.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference37 articles.

1. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters;PloS One,2013

2. Modular control of human movement during running: an open access data set;Frontiers in Physiology,2018

3. Synthesis of concentric circular antenna arrays using dragonfly algorithm;International Journal of Electronics,2018

4. Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization;2014 IEEE Congress on Evolutionary Computation (CEC),2014

5. Evaluating the mean-variance mapping optimization on the IEEE-CEC 2014 test suite,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3