Physics-informed neural networks for consolidation of soils

Author:

Zhang Sheng,Lan PengORCID,Li Hai-Chao,Tong Chen-XiORCID,Sheng Daichao

Abstract

PurposePrediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of partial differential equations (PDEs). Generally, there are challenges in solving these two issues using traditional numerical algorithms, while the conventional data-driven methods require massive data sets for training and exhibit negative generalization potential. This paper aims to employ the physics-informed neural networks (PINNs) for solving both the forward and inverse problems.Design/methodology/approachA typical consolidation problem with continuous drainage boundary conditions is firstly considered. The PINNs, analytical, and finite difference method (FDM) solutions are compared for the forward problem, and the estimation of the interface parameters involved in the problem is discussed for the inverse problem. Furthermore, the authors also explore the effects of hyperparameters and noisy data on the performance of forward and inverse problems, respectively. Finally, the PINNs method is applied to the more complex consolidation problems.FindingsThe overall results indicate the excellent performance of the PINNs method in solving consolidation problems with various drainage conditions. The PINNs can provide new ideas with a broad application prospect to solve PDEs in the field of geotechnical engineering, and also exhibit a certain degree of noise resistance for estimating the soil parameters.Originality/valueThis study presents the potential application of PINNs for the consolidation of soils. Such a machine learning algorithm helps to obtain remarkably accurate solutions and reliable parameter estimations with fewer and average-quality data, which is beneficial in engineering practice.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3