Abstract
PurposePrediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of partial differential equations (PDEs). Generally, there are challenges in solving these two issues using traditional numerical algorithms, while the conventional data-driven methods require massive data sets for training and exhibit negative generalization potential. This paper aims to employ the physics-informed neural networks (PINNs) for solving both the forward and inverse problems.Design/methodology/approachA typical consolidation problem with continuous drainage boundary conditions is firstly considered. The PINNs, analytical, and finite difference method (FDM) solutions are compared for the forward problem, and the estimation of the interface parameters involved in the problem is discussed for the inverse problem. Furthermore, the authors also explore the effects of hyperparameters and noisy data on the performance of forward and inverse problems, respectively. Finally, the PINNs method is applied to the more complex consolidation problems.FindingsThe overall results indicate the excellent performance of the PINNs method in solving consolidation problems with various drainage conditions. The PINNs can provide new ideas with a broad application prospect to solve PDEs in the field of geotechnical engineering, and also exhibit a certain degree of noise resistance for estimating the soil parameters.Originality/valueThis study presents the potential application of PINNs for the consolidation of soils. Such a machine learning algorithm helps to obtain remarkably accurate solutions and reliable parameter estimations with fewer and average-quality data, which is beneficial in engineering practice.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献