Abstract
PurposeIn this research, the free vibration sensitivity analysis of cracked fiber metal laminated (FML) beams is investigated numerically and experimentally. The effects of single and double cracks on the frequency of the cantilever beams are simulated using the finite element method (FEM) and compared to the experimental results.Design/methodology/approachIn FEM analysis, the crack defect is simulated by the contour integral technique without considering the crack growth. The specimens are fabricated with an aluminum sheet, woven carbon fiber and epoxy resin. The FML specimens are constructed by bonding five layers as [carbon fiber-epoxy/Al/carbon fiber-epoxy/Al/carbon fiber-epoxy]. First, the location and length of cracks are considered input factors for the frequency sensitivity analysis. Then, the design of the experiment is produced in the cases of single and double cracks to compute the frequency of the beams in the first and second modes using the FEM. The mechanical shaker is used to determine the natural frequency of the specimens. In addition, the predicted response values of the frequency for the beam are used to compare with the experimental results.FindingsConsequently, the results of the sensitivity analysis demonstrate that the location and length of the crack have significant effects on the modes.Originality/valueEffective interaction diagrams are introduced to investigate crack detection for input factors, including the location and length of cracks in the cases of single and double cracks.