An epidemic model for correlated information diffusion in crowd intelligence networks

Author:

Li Yuejiang,Zhao H. Vicky,Chen Yan

Abstract

Purpose With the popularity of the internet and the increasing numbers of netizens, tremendous information flows are generated daily by the intelligently interconnected individuals. The diffusion processes of different information are not independent, and they interact with and influence each other. Modeling and analyzing the interaction between correlated information play an important role in the understanding of the characteristics of information dissemination and better control of the information flows. This paper aims to model the correlated information diffusion process over the crowd intelligence networks. Design/methodology/approach This study extends the classic epidemic susceptible–infectious–recovered (SIR) model and proposes the SIR mixture model to describe the diffusion process of two correlated pieces of information. The whole crowd is divided into different groups with respect to their forwarding state of the correlated information, and the transition rate between different groups shows the property of each piece of information and the influences between them. Findings The stable state of the SIR mixture model is analyzed through the linearization of the model, and the stable condition can be obtained. Real data are used to validate the SIR mixture model, and the detailed diffusion process of correlated information can be inferred by the analysis of the parameters learned through fitting the real data into the SIR mixture model. Originality/value The proposed SIR mixture model can be used to model the diffusion of correlated information and analyze the propagation process.

Publisher

Emerald

Reference33 articles.

1. An epidemic model for news spreading on twitter,2011

2. Interacting viruses in networks: can both survive?,2012

3. Evolutionary information diffusion over heterogeneous social networks;IEEE Transactions on Signal and Information Processing over Networks,2016

4. Crowd science and engineering: concept and research framework;International Journal of Crowd Science,2017

5. Epidemics and rumours;Nature,1964

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3