Design and evaluation of a micro resonator structure as a biosensor for droplet analysis with a standard fabrication method

Author:

Eidi Amin,Shamsi Mousa,Badri Ghavifekr Habib

Abstract

Purpose In this work, the sensing and actuating elements are designed with interdigitated capacitors away from the sensitive element on which the droplet is placed. This pattern helps to prevent interference of electrical elements with the droplet. Choosing shear resonance mode at this proposed structure minimizes the damping effect of droplet touch by the resonator structure. The glass-based standard fabrication method of the proposed biosensor is presented exactly. Design/methodology/approach Mechanical resonator sensors are extremely limited because of the high damping factor and the high electrical conductivity in the aqueous environment. In this work, a molecule detector biosensor is proposed for droplet analysis, which is possible to fabricate using micro-electro-mechanical systems (MEMS) technology. By electromechanical coupling of resonators as a mechanical resonator structure, a standing mechanical wave is formed at this structure by electrostatic actuating elements. Findings In this paper, a mechanical resonator structure as a biosensor is proposed for micro-droplet analysis that can be fabricated by MEMS technology. It is designed at a lower cost fabrication method using electrostatic technology and interdigitated capacitors. The response of the biosensor displacement frequency at the resonance frequency of the desired mode is reasonable for measuring the capacitive changes of its output. The mass sensitivity of the proposed biosensor is in the range of 1 ng, and it has a large sensitive area for capturing target molecules. Originality/value To evaluate the quality of the proposed design, the stimulated analysis is conducted by COMSOL and results are presented.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference41 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3