Context-aware behaviour prediction for autonomous driving: a deep learning approach

Author:

R. Syama,C. Mala

Abstract

Purpose This paper aims to predict the behaviour of the vehicles in a mixed driving scenario. This proposes a deep learning model to predict lane-changing scenarios in highways incorporating current and historical information and contextual features. The interactions among the vehicles are modelled using long-short-term memory (LSTM). Design/methodology/approach Predicting the surrounding vehicles' behaviour is crucial in any Advanced Driver Assistance Systems (ADAS). To make a decision, any prediction models available in the literature consider the present and previous observations of the surrounding vehicles. These existing models failed to consider the contextual features such as traffic density that also affect the behaviour of the vehicles. To forecast the appropriate driving behaviour, a better context-aware learning method should be able to consider a distinct goal for each situation is more significant. Considering this, a deep learning-based model is proposed to predict the lane changing behaviours using past and current information of the vehicle and contextual features. The interactions among vehicles are modeled using an LSTM encoder-decoder. The different lane-changing behaviours of the vehicles are predicted and validated with the benchmarked data set NGSIM and the open data set Level 5. Findings The lane change behaviour prediction in ADAS is gaining popularity as it is crucial for safe travel in a mixed driving environment. This paper shows the prediction of maneuvers with a prediction window of 5 s using NGSIM and Level 5 data sets. The proposed method gives a prediction accuracy of 97% on average for all lane-change maneuvers for both the data sets. Originality/value This research presents a strategy for predicting autonomous vehicle behaviour based on contextual features. The paper focuses on deep learning techniques to assist the ADAS.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference21 articles.

1. Social LSTM: human trajectory prediction in crowded spaces,2016

2. Modeling vehicle interactions via modified LSTM models for trajectory prediction;IEEE Access,2019

3. Multi-Modal trajectory prediction of surrounding vehicles with maneuver based LSTMs,2018

4. Context–aware assistive driving: an overview of techniques for mitigating the risks of driver in real-time driving environment;International Journal of Pervasive Computing and Communications,2021

5. Deep learning;Genetic Programming and Evolvable Machines,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3