Optimization of depositing uniform and wear-resistant diamond films on massive mechanical seals

Author:

He Yun,Sun Fanghong,Lei Xuelin

Abstract

Purpose This study aims to obtain diamond-coated mechanical seals with improved sealing performance and considerable cost. To achieve this purpose, the study focuses on depositing uniform, wear-resistant and easily polished diamond coatings on massive mechanical seals in a large-scale vacuum chamber. Design/methodology/approach The computational fluid dynamics simulation test and its corresponding deposition experiment are carried out to improve the uniformity of diamond films on massive mechanical seals. The polishing properties and sealing performance of mechanical seals coated with three different diamond films (microcrystalline diamond [MCD], nanocrystalline diamond [NCD] and microcrystalline/nanocrystalline diamond [MNCD]) and uncoated mechanical seals are comparatively studied using the polishing tests and dynamic seal tests to obtain the optimized diamond coating type on the mechanical seals. Findings The substrate rotation and four gas outlets distribution are helpful for depositing uniform diamond coatings on massive mechanical seals. The MNCD-coated mechanical seal shows the advantages of high polishing efficiency in the initial polishing process and excellent wear resistance and self-lubrication property in the follow-up polishing period because of its unique composite diamond film structures. The MNCD-coated mechanical seal shows the longest working life under dry friction condition, about 14, 1.27 and 1.9 times of that for the uncoated, MCD and NCD coated mechanical seals, respectively. Originality/value The effect of substrate rotation and gas outlets distribution on temperature and gas flow field during diamond deposition procedure is simulated. The MNCD-coated mechanical seal exhibits a superior sealing performance compared with the MCD-coated, NCD-coated and uncoated mechanical seals, which is helpful for decreasing the operating system shut-down frequency and saving operating energy consumption.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference24 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3