Author:
Shao Jun-peng,Liu Guang-dong,Yu Xiaodong
Abstract
PurposeThis paper aims to improve the bearing capacity of hydrostatic thrust bearing under working conditions of high speed and heavy load; a new wedge-shaped structure opened on an edge of oil seal is put forward, the loss and insufficiency for hydrostatic bearing capacity are made up by using dynamic pressure, and then, hydrostatic hydrodynamic lubrication is realized.Design/methodology/approachOil film three-dimensional models of unidirectional and bi-directional hydrostatic hydrodynamic oil pad are established by using UG. The oil film pressure fields of two kinds of oil pad are simulated by using ANSYS ICEM CFD and ANSYS CFX; the pressure fields distribution characteristics are obtained, and the effects of workbench rotary speed and bearing weight on pressure field are analyzed. Also, the experimental verification is made.FindingsThe results demonstrate that with an increase in workbench rotary speed, the oil film pressure of two kinds of hybrid oil pad increases gradually, and the maximum pressure of the bi-directional one accounts for 95 per cent of the unidirectional one when the load is constant. With an increase in load, the oil film pressure of two kinds of hybrid oil pad increases gradually, the difference between them is 9.4 per cent under the condition of load of 25twhen the rotary speed is constant.Originality/valueThe paper can provide theoretical basis for a structure design of hybrid thrust bearing under different rotary speed and load conditions, and compensate the shortage of static pressure-bearing capacity by using dynamic pressure, improve the stability of vertical CNC machining equipment.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Reference19 articles.
1. Simulation of dynamic effects on hydrostatic bearings and membrane restrictors;Production Engineering,2007
2. Bearing characteristics study on liquid hybrid bearing based on CFD;Manufacturing Technology and Machine Tools,2012
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献