Optimizing assembly sequence planning using precedence graph-based assembly subsets prediction method

Author:

Zhang Nan,Liu Zhenyu,Qiu Chan,Hu Weifei,Tan Jianrong

Abstract

Purpose Assembly sequence planning (ASP) plays a vital role in assembly process because it directly influences the feasibility, cost and time of the assembly process. The purpose of this study is to solve ASP problem more efficiently than current algorithms. Design/methodology/approach A novel assembly subsets prediction method based on precedence graph is proposed to solve the ASP problem. The proposed method adopts the idea of local to whole and integrates a simplified firework algorithm. First, assembly subsets are generated as initial fireworks. Then, each firework explodes to several sparks with higher-level assembly subsets and new fireworks are selected for next generation according to selection strategy. Finally, iterating the algorithm until complete and feasible solutions are generated. Findings The proposed method performs better in comparison with state-of-the-art algorithms because of the balance of exploration (fireworks) and exploitation (sparks). The size of initial fireworks population determines the diversity of the solution, so assembly subsets prediction method based on precedence graph (ASPM-PG) can explore the solution space. The size of sparks controls the exploitation ability of ASPM-PG; with more sparks, the direction of a specific firework can be adequately exploited. Practical implications The proposed method is with simple structure and high efficiency. It is anticipated that using the proposed method can effectively improve the efficiency of ASP and reduce computing cost for industrial applications. Originality/value The proposed method finds the optimal sequence in the construction process of assembly sequence rather than adjusting order of a complete assembly sequence in traditional methods. Moreover, a simplified firework algorithm with new operators is introduced. Two basic size parameters are also analyzed to explain the proposed method.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference36 articles.

1. Optimization of assembly sequence planning using soft computing approaches: a review;Archives of Computational Methods in Engineering,2019

2. A representation for discrete assembly sequences in task planning,1989

3. A review on assembly sequence generation and its automation,2015

4. An advanced immune based strategy to obtain an optimal feasible assembly sequence;Assembly Automation,2016

5. Optimization of robotic assembly sequences using immune based technique;Journal of Manufacturing Technology Management,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3