Author:
Zhang Nan,Liu Zhenyu,Qiu Chan,Hu Weifei,Tan Jianrong
Abstract
Purpose
Assembly sequence planning (ASP) plays a vital role in assembly process because it directly influences the feasibility, cost and time of the assembly process. The purpose of this study is to solve ASP problem more efficiently than current algorithms.
Design/methodology/approach
A novel assembly subsets prediction method based on precedence graph is proposed to solve the ASP problem. The proposed method adopts the idea of local to whole and integrates a simplified firework algorithm. First, assembly subsets are generated as initial fireworks. Then, each firework explodes to several sparks with higher-level assembly subsets and new fireworks are selected for next generation according to selection strategy. Finally, iterating the algorithm until complete and feasible solutions are generated.
Findings
The proposed method performs better in comparison with state-of-the-art algorithms because of the balance of exploration (fireworks) and exploitation (sparks). The size of initial fireworks population determines the diversity of the solution, so assembly subsets prediction method based on precedence graph (ASPM-PG) can explore the solution space. The size of sparks controls the exploitation ability of ASPM-PG; with more sparks, the direction of a specific firework can be adequately exploited.
Practical implications
The proposed method is with simple structure and high efficiency. It is anticipated that using the proposed method can effectively improve the efficiency of ASP and reduce computing cost for industrial applications.
Originality/value
The proposed method finds the optimal sequence in the construction process of assembly sequence rather than adjusting order of a complete assembly sequence in traditional methods. Moreover, a simplified firework algorithm with new operators is introduced. Two basic size parameters are also analyzed to explain the proposed method.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Reference36 articles.
1. Optimization of assembly sequence planning using soft computing approaches: a review;Archives of Computational Methods in Engineering,2019
2. A representation for discrete assembly sequences in task planning,1989
3. A review on assembly sequence generation and its automation,2015
4. An advanced immune based strategy to obtain an optimal feasible assembly sequence;Assembly Automation,2016
5. Optimization of robotic assembly sequences using immune based technique;Journal of Manufacturing Technology Management,2013
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献