Application of numerical procedure for thermal diagnostics of the delamination of strengthening material at concrete construction

Author:

Adamczyk Wojciech Piotr,Gorski Marcin,Ostrowski Ziemowit,Bialecki Ryszard,Kruczek Grzegorz,Przybyła Grzegorz,Krzywon Rafal,Bialozor Rafal

Abstract

Purpose Large structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this technology to work requires the quality of the bonding of FRP and the concrete to be perfect. Possible defects may arise in the phase of construction but also as a result of long-term fatigue loads. These defects having different forms of voids and discontinuities in the bonding layer are difficult to detect by optical inspection. This paper aims to describe the development of a rapid and nondestructive method for quantitative assessment of the debonding between materials. Design/methodology/approach The applied technique belongs to the wide class of active infrared (IR) thermography, the principle of which is to heat (or cool) the investigated object, and determine the properties of interest from the recorded, by an IR camera, temperature field. The methodology implemented in this work is to uniformly heat for a few seconds, using a set of halogen lamps, the FRP surface attached to the concrete. The parameter of interest is the thermal resistance of the layer separating the polymer tape and the concrete. The presence of voids and debonding will result in large values of this resistance. Its value is retrieved by solving an inverse transient heat conduction problem. This is accomplished by minimizing, in the sense of least squares, the difference between the recorded and simulated temperatures. The latter is defined as a solution of a 1D transient heat conduction problem with the already mentioned thermal resistance treated as the only decision variable. Findings A general method has been developed, which detects debonding of the FRP tapes from the concrete. The method is rapid and nondestructive. Owing to a special selection of the compared dimensionless measured and simulated temperatures, the method is not sensitive to the surface quality (roughness and emissivity). Measurements and calculation may be executed within seconds. The efficiency of the technique has been shown at a sample, where the defects have been artificially introduced in a controlled manner. Originality/value A quantitative assessment procedure which can be used to determine the extent of the debonding has been developed. The procedure uses inverse technique whose result is the unknown thermal resistance between the member and the FRP strip.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference19 articles.

1. Nondestructive technique of measuring heat conductivity of thermal barrier coatings;International Journal of Heat and Mass Transfer,2017

2. ANSYS, Inc (2019), “ANSYS FluentOn-line”, available at: www.ansys.com

3. Evaluation of defect in multilayer carbon fiber epoxy for aeronautics applications;Advance in Acoustic and Vibration,2009

4. Irt survey for the quality control of frp reinforced r.c. structures,2008

5. EBR strengthening technique for concrete, long-term behaviour and historical survey;Polymers,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3