Additive manufacturing for repairing: from damage identification and modeling to DLD

Author:

Perini Matteo,Bosetti Paolo,Balc Nicolae

Abstract

Purpose This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual labor. The main purpose of the hybrid repair process is to restore the original shape of the mechanical parts, by adding and removing material according to the mismatch between the damaged object and the virtual model, to restore its geometrical properties. Design/methodology/approach The DUOADD software tool translates the information collected from a 3D scanner into a digital computer aided design solid model, which can be manipulated through Siemens NX computer aided manufacturing (CAM), to obtain the tool paths, for the Direct Laser Deposition (DLD) technology. DUOADD uses octrees to effectively analyze the damaged region of the mechanical part and then to discretize the volume to be added to export CAM-compatible information as a 3D model, for additive operations. Findings DUOADD is the missing link between two valuable existing technologies, 3D scan and CAM for additive manufacturing, which can now be connected together, to perform automatic repairing. Research limitations/implications A trade-off between resolution and computational effort needs to be achieved. Practical implications DUOADD output is a STEP file, transferred to the CAM software to create the additive and the milling tool paths. The maximum deviation was 40 micrometers, as compared with the original solid model. Originality/value The paper presents a new procedure and new software tools (DUOADD), for the automation of damaged objects restoration process. DUOADD software provides suitable data for using a 5-axis computer numerical control (CNC) milling machine equipped with a DLD tool.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference34 articles.

1. Fast 3D triangle-box overlap Testing;Journal of Graphics Tools,2001

2. Volume/surface octrees for the representation of three-dimensional objects;Computer Vision, Graphics, and Image Processing,1986

3. Cignoni, P. (2019), “MeshLab”, available at: http://meshlab.sourceforge.n/

4. A reliable extended octree representation of CSG objects with an adaptive subdivision depth,2008

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3