Knowledge creation and application of optimal tolerance distribution method for aircraft product assembly

Author:

Miah Md Helal,Zhang Jianhua,Singh Chand Dharmahinder

Abstract

Purpose This paper aims to illustrate the tolerance optimization method based on the assembly accuracy constrain, precession constrain and the cost of production of the assembly product. Design/methodology/approach A tolerance optimization method is an excellent way to perform product assembly performance. The tolerance optimization method is adapted to the process analysis of the hatch and skin of an aircraft. In this paper, the tolerance optimization techniques are applied to the tolerance allocation for step difference analysis (example: step difference between aircraft cabin door and fuselage outer skin). First, a mathematical model is described to understand the relationship between manufacturing cost and tolerance cost. Second, the penalty function method is applied to form a new equation for tolerance optimization. Finally, MATLAB software is used to calculate 170 loops iteration to understand the efficiency of the new equation for tolerance optimization. Findings The tolerance optimization method is based on the assembly accuracy constrain, machinery constrain and the cost of production of the assembly product. The main finding of this paper is the lowest assembly and lowest production costs that met the product tolerance specification. Research limitations/implications This paper illustrated an efficient method of tolerance allocation for products assembly. After 170 loops iterations, it founds that the results very close to the original required tolerance. But it can easily say that the different number of loops iterations may have a different result. But optimization result must be approximate to the original tolerance requirements. Practical implications It is evident from Table 4 that the tolerance of the closed loop is 1.3999 after the tolerance distribution is completed, which is less than and very close to the original tolerance of 1.40; the machining precision constraint of the outer skin of the cabin door and the fuselage is satisfied, and the assembly precision constraint of the closed loop is satisfied. Originality/value The research may support further research studies to minimize cost tolerance allocation using tolerance cost optimization techniques, which must meet the given constrain accuracy for assembly products.

Publisher

Emerald

Subject

Aerospace Engineering

Reference19 articles.

1. A survey of research in the application of tolerance analysis to the design of mechanical assemblies;Research in Engineering Design,1991

2. Least cost tolerance allocation for mechanical assemblies with automated process selection;Manufacturing Review,1990

3. Key assembly process quality control technology for aircraft based on preassembly precision analysis;Aerospace Manufacturing Technology,2019

4. Measure costs right: make the right decisions;Harvard Business Review,1988

5. Equivalent analysis method of deviation source for mechanism assembly;Computer-Integrated Manufacturing,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3