Affective actions recognition in dyadic interactions based on generative and discriminative models

Author:

Yang Ning,Wang Zhelong,Zhao Hongyu,Li Jie,Qiu Sen

Abstract

Purpose Dyadic interactions are significant for human life. Most body sensor networks-based research studies focus on daily actions, but few works have been done to recognize affective actions during interactions. The purpose of this paper is to analyze and recognize affective actions collected from dyadic interactions. Design/methodology/approach A framework that combines hidden Markov models (HMMs) and k-nearest neighbor (kNN) using Fisher kernel learning is presented in this paper. Furthermore, different features are considered according to the interaction situations (positive situation and negative situation). Findings Three experiments are conducted in this paper. Experimental results demonstrate that the proposed Fisher kernel learning-based framework outperforms methods using Fisher kernel-based approach, using only HMMs and kNN. Practical implications The research may help to facilitate nonverbal communication. Moreover, it is important to equip social robots and animated agents with affective communication abilities. Originality/value The presented framework may gain strengths from both generative and discriminative models. Further, different features are considered based on the interaction situations.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference43 articles.

1. Automatic activity classification and movement assessment during a sports training session using wearable inertial sensors,2014

2. Learning a joint discriminative-generative model for action recognition,2015

3. A survey of challenges and applications of wireless body area network (wban) and role of a virtual doctor server in existing architecture,2012

4. Motor mapping of implied actions during perception of emotional body language;Brain Stimulation,2012

5. The Jestkod database: an affective multimodal database of dyadic interactions;Language Resources and Evaluation,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3