Assessment of non-linear behavior and ductility of reinforced concrete structures

Author:

Belhocine Malika,Bouafia Youcef,Kachi Mohand Said,Benyahi Karim

Abstract

Purpose The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures. Design/methodology/approach The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element. Findings The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility. Originality/value The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference48 articles.

1. Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement;Journal of Constructional Steel Research,2020

2. Modeling and simulation of nonlinear behavior of planar structures, of reinforced concrete and fibers concrete by the finite element beams;Journal of Science Research,2014

3. Flexural ductility design of high-strength concrete columns;The Structural Design of Tall and Special Buildings,2013

4. Modélisation des murs porteurs en béton armé par éléments finis multicouches;Revue Européenne Des Éléments Finis,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3