Natural convection in a horizontal annular sector containing heat-generating porous medium

Author:

Machado dos Santos Beatriz,de Sá Ludimila Silva Salles,Su Jian

Abstract

Purpose The purpose of this work is to propose the generalized integral transform technique (GITT) for the investigation of two-dimensional steady-state natural convection in a horizontal annular sector containing heat-generating porous medium. Design/methodology/approach GITT was used to investigate steady-state natural convection in a horizontal annular sector containing heat-generating porous medium. The governing equations in stream function formulation are integral transformed in the azimuthal direction, with the resulting system of nonlinear ordinary differential equations numerically solved by finite difference method. The GITT solutions are validated by comparison with fully numerical solutions by finite difference method, showing excellent agreement and convergence with low computational cost. Findings The effects of increasing Rayleigh number are more noticeable in stream function, whereas less significant for temperature. With decreasing annular sector angle from π to π/6, a reduction in the maximum temperature and stream function was noticed. While the two counter-rotating vortical structure is common for all annular sector angles investigated, the relative size of the two vortices varies with decreasing sector angle, with the vortex near the outer radius of the cavity becoming dominant. The annular sector angle affects strongly the maximum temperature and the partition of heat transfer on the inner and outer surfaces of the annular sector with heat-generating porous medium. Originality/value The strong effects of the annular sector angle on natural convection in annular sectors containing heat-generating porous medium are investigated for the first time. The proposed hybrid analytical–numerical approach can be applied in other convection problems in cylindrical or annular configurations, with or without porous medium. It shows potential for applications in practical convection problems in the nuclear and other industries.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference36 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3