Buoyancy-induced convection from a pair of heated and cooled horizontal circular cylinders inside an adiabatic tilted cavity filled with alumina/water nanofluids

Author:

Corcione Massimo,Habib Emanuele,Quintino Alessandro,Ricci Elisa,Spena Vincenzo Andrea

Abstract

Purpose This paper aims to investigate numerically buoyancy-induced convection from a pair of differentially heated horizontal circular cylinders set side by side in a nanofluid-filled adiabatic square enclosure, inclined with respect to gravity so that the heated cylinder is located below the cooled one, using a two-phase model based on the double-diffusive approach assuming that the Brownian diffusion and thermophoresis are the only slip mechanisms by which the solid phase can develop a significant relative velocity with respect to the liquid phase. Design/methodology/approach The system of the governing equations of continuity, momentum and energy for the nanofluid, and continuity for the nanoparticles, is solved by a computational code based on the SIMPLE-C algorithm. Numerical simulations are performed for Al2O3 + H2O nanofluids using the average volume fraction of the suspended solid phase, the tilting angle of the enclosure, the nanoparticle size, the average nanofluid temperature and the inter-cylinder spacing, as independent variables. Findings The main results obtained may be summarized as follows: at high temperatures, the nanofluid heat transfer performance relative to that of the pure base liquid increases with increasing the average volume fraction of the suspended solid phase, whereas at low temperatures it has a peak at an optimal particle loading; the relative heat transfer performance of the nanofluid has a peak at an optimal tilting angle of the enclosure; the relative heat transfer performance of the nanofluid increases notably as the average temperature is increased, and just moderately as inter-cylinder spacing is increased and the nanoparticle size is decreased. Originality/value The two-phase computational code used in the present study incorporates three empirical correlations for the evaluation of the effective thermal conductivity, the effective dynamic viscosity and the coefficient of thermophoretic diffusion, all based on a high number of literature experimental data.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference48 articles.

1. Effects of two-phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field;International Journal of Numerical Methods for Heat and Fluid Flow,2018

2. Brownian motion and thermophoresis effects on natural convection of alumina-water nanofluid;Journal of Mechanical Engineering Science,2012

3. Numerical study of double-diffusive natural convection in a square cavity;International Journal of Heat and Mass Transfer,1992

4. Cooperating thermosolutal convection in encloseres-I. scale analysis and mass transfer;International Journal of Heat and Mass Transfer,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3