Review of short-text classification

Author:

Alsmadi Issa,Gan Keng Hoon

Abstract

PurposeRapid developments in social networks and their usage in everyday life have caused an explosion in the amount of short electronic documents. Thus, the need to classify this type of document based on their content has a significant implication in many applications. The need to classify these documents in relevant classes according to their text contents should be interested in many practical reasons. Short-text classification is an essential step in many applications, such as spam filtering, sentiment analysis, Twitter personalization, customer review and many other applications related to social networks. Reviews on short text and its application are limited. Thus, this paper aims to discuss the characteristics of short text, its challenges and difficulties in classification. The paper attempt to introduce all stages in principle classification, the technique used in each stage and the possible development trend in each stage.Design/methodology/approachThe paper as a review of the main aspect of short-text classification. The paper is structured based on the classification task stage.FindingsThis paper discusses related issues and approaches to these problems. Further research could be conducted to address the challenges in short texts and avoid poor accuracy in classification. Problems in low performance can be solved by using optimized solutions, such as genetic algorithms that are powerful in enhancing the quality of selected features. Soft computing solution has a fuzzy logic that makes short-text problems a promising area of research.Originality/valueUsing a powerful short-text classification method significantly affects many applications in terms of efficiency enhancement. Current solutions still have low performance, implying the need for improvement. This paper discusses related issues and approaches to these problems.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference89 articles.

1. Text feature selection using ant colony optimization;Expert Systems with Applications,2009

2. A novel framework for termset selection and weighting in binary text classification;Engineering Applications of Artificial Intelligence,2014

3. Sentiment analysis system adaptation for multilingual processing: the case of tweets,2015

4. Bekkerman, R. and Allan, J. (2003), “Using bigrams in text categorization”, Technical Report IR-408, Center of Intelligent Information Retrieval, UMass Amherst, Vol. 1003, pp. 1-10, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.1999&rep=rep1&type=pdf

5. Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering;Expert Systems with Applications,2015

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3