Dynamic safety prewarning mechanism of human–machine–environment using computer vision

Author:

Xu Wenpei,Wang Ting-KweiORCID

Abstract

PurposeThis study provides a safety prewarning mechanism, which includes a comprehensive risk assessment model and a safety prewarning system. The comprehensive risk assessment model is capable of assessing nine safety indicators, which can be categorised into workers’ behaviour, environment and machine-related safety indicators, and the model is embedded in the safety prewarning system. The safety prewarning system can automatically extract safety information from surveillance cameras based on computer vision, assess risks based on the embedded comprehensive risk assessment model, categorise risks into five levels and provide timely suggestions.Design/methodology/approachFirstly, the comprehensive risk assessment model is constructed by adopting grey multihierarchical analysis method. The method combines the Analytic Hierarchy Process (AHP) and the grey clustering evaluation in the grey theory. Expert knowledge, obtained through the questionnaire approach, contributes to set weights of risk indicators and evaluate risks. Secondly, a safety prewarning system is developed, including data acquisition layer, data processing layer and prewarning layer. Computer vision is applied in the system to automatically extract real-time safety information from the surveillance cameras. The safety information is then processed through the comprehensive risk assessment model and categorized into five risk levels. A case study is presented to verify the proposed mechanism.FindingsThrough a case study, the result shows that the proposed mechanism is capable of analyzing integrated human-machine-environment risk, timely categorising risks into five risk levels and providing potential suggestions.Originality/valueThe comprehensive risk assessment model is capable of assessing nine risk indicators, identifying three types of entities, workers, environment and machine on the construction site, presenting the integrated risk based on nine indicators. The proposed mechanism, which adopts expert knowledge through Building Information Modeling (BIM) safety simulation and extracts safety information based on computer vision, can perform a dynamic real-time risk analysis, categorize risks into five risk levels and provide potential suggestions to corresponding risk owners. The proposed mechanism can allow the project manager to take timely actions.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3