Improving the forming quality of fused filament fabrication parts by applied vibration

Author:

Jiang Shijie,Siyajeu Yannick,Shi Yinfang,Zhu Shengbo,Li He

Abstract

Purpose The purpose of this study is to investigate the efficiency of applied vibration in improving the forming quality (mechanical property and dynamics characteristics) of fused filament fabrication (FFF) parts. Design/methodology/approach A vibrating FFF three-dimensional printer was set up, with which the samples fabricated in different directions were manufactured separately without and with vibration applied. A series of experimental tests, including tensile tests, dynamics tests and scanning electron microscopy (SEM) tests, were performed on these samples to experimentally quantify the effect of applied vibration on their forming quality. Findings It has been found that the applied vibration can significantly increase the tensile strength and plasticity of the samples built in Z-direction, and obviously decrease the orthogonal anisotropy. It can also significantly change the sample’s natural frequency, decrease the resonant response and increase the modal damping ratio, thus improve the anti-vibration capability of FFF samples. In addition, the SEM analysis confirmed that applying vibration into FFF process could improve the forming quality of the fabricated part. Research limitations/implications Future research may be focused on investigating the efficiency of applied vibration in improving the forming quality of parts fabricated by the other additive manufacturing techniques. Practical implications This study helps to improve the reliability of FFF parts and extend the application range of FFF technology. Originality/value A novel method to improve the forming quality of FFF parts is provided and the available information about the performance of dynamics characteristics.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference34 articles.

1. Dynamic mechanical properties of ABS material processed by fused deposition modelling;International Journal of Engineering Research and Applications,2012

2. Fused filament fabrication of fiber-reinforced polymers: a review;Additive Manufacturing,2018

3. FDM prototype experimental research of processing parameter optimization to achieve higher tensile stress;Solid State Phenomena,2014

4. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling;Polymer Testing,2018

5. Mechanical behaviour of ABS: an experimental study using FDM and injection moulding techniques;Journal of Manufacturing Processes,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3