Experimental investigation on lift generation of flapping MAV with insect wings of various species

Author:

S. Syam Narayanan,R. Asad Ahmed,Varghese Jijo Philip,S. Gopinath,Paulraj Jedidiah,M. Muthukumar

Abstract

Purpose The purpose of this paper is to experimentally analyze the effect of wing shape of various insects of different species in a flapping micro aerial vehicle (MAV). Design/methodology/approach Six different wings are fabricated for the MAV configuration, which is restricted to the size of 15 cm length and width; all wings have different surface area and constant span length of 6 cm. The force is being measured with the help of a force-sensing resistor (FSR), and the coefficients of lift were calculated and compared. Findings This study shows that the wing “Tipula sp” has better value of lift than other insect wings, except for the negative angle of attacks. The wing “Aeshna multicolor” gives the better values of lift in negative angles of attack. Practical implications This paper lays the foundation for the development of flapping MAVs with the insect wings. This type of wing can be used for spying purpose in the military zone and also can be used to survey remote and dangerous places where humans cannot enter. Originality/value This paper covers all basic insect wing configurations of different species with exact mimics of the veins. As the experimental investigation was carried for different angle of attacks, velocities and flapping frequencies, this paper can be used as reference for future flapping wing MAV developers.

Publisher

Emerald

Subject

Aerospace Engineering

Reference17 articles.

1. Unsteady aerodynamic performance of model wings at low Reynolds numbers;The Journal of Experimental Biology,1993

2. Wing rotation and the aerodynamic basis of insect flight;Science,1999

3. The aerodynamics of hovering insect flight’. IV: aerodynamic mechanisms;Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1984

4. Leading-edge vortices in insect flight;Nature International Nature,1996

5. Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle;Aerospace Science and Technology,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3