Global search in single-solution-based metaheuristics

Author:

Jaddi Najmeh Sadat,Abdullah Salwani

Abstract

PurposeMetaheuristic algorithms are classified into two categories namely: single-solution and population-based algorithms. Single-solution algorithms perform local search process by employing a single candidate solution trying to improve this solution in its neighborhood. In contrast, population-based algorithms guide the search process by maintaining multiple solutions located in different points of search space. However, the main drawback of single-solution algorithms is that the global optimum may not reach and it may get stuck in local optimum. On the other hand, population-based algorithms with several starting points that maintain the diversity of the solutions globally in the search space and results are of better exploration during the search process. In this paper more chance of finding global optimum is provided for single-solution-based algorithms by searching different regions of the search space.Design/methodology/approachIn this method, different starting points in initial step, searching locally in neighborhood of each solution, construct a global search in search space for the single-solution algorithm.FindingsThe proposed method was tested based on three single-solution algorithms involving hill-climbing (HC), simulated annealing (SA) and tabu search (TS) algorithms when they were applied on 25 benchmark test functions. The results of the basic version of these algorithms were then compared with the same algorithms integrated with the global search proposed in this paper. The statistical analysis of the results proves outperforming of the proposed method. Finally, 18 benchmark feature selection problems were used to test the algorithms and were compared with recent methods proposed in the literature.Originality/valueIn this paper more chance of finding global optimum is provided for single-solution-based algorithms by searching different regions of the search space.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference54 articles.

1. A modified electromagnetic-like mechanism for rough set attribute reduction,2016

2. Great deluge algorithm for rough set attribute reduction,2010

3. Asynchronous accelerating multi-leader salp chains for feature selection;Applied Soft Computing,2018

4. Consideration of nonuniformity in elongation of microstructures in a mechanically tunable microfluidic device for size-based isolation of microparticles;Journal of Microelectromechanical Systems,2014

5. Atashpaz-Gargari, E. and Lucas, C. (2007), “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition”, Evolutionary Computation, 2007, CEC 2007, IEEE Congress on Evolutionary Computation, pp. 4661-4667.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3