A hybrid method for forecasting coal price based on ensemble learning and deep learning with data decomposition and data enhancement

Author:

Tang Jing,Guo YidaORCID,Han Yilin

Abstract

PurposeCoal is a critical global energy source, and fluctuations in its price significantly impact related enterprises' profitability. This study aims to develop a robust model for predicting the coal price index to enhance coal purchase strategies for coal-consuming enterprises and provide crucial information for global carbon emission reduction.Design/methodology/approachThe proposed coal price forecasting system combines data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. It addresses the challenge of merging low-resolution and high-resolution data by adaptively combining both types of data and filling in missing gaps through interpolation for internal missing data and self-supervision for initiate/terminal missing data. The system employs self-supervised learning to complete the filling of complex missing data.FindingsThe ensemble model, which combines long short-term memory, XGBoost and support vector regression, demonstrated the best prediction performance among the tested models. It exhibited superior accuracy and stability across multiple indices in two datasets, namely the Bohai-Rim steam-coal price index and coal daily settlement price.Originality/valueThe proposed coal price forecasting system stands out as it integrates data decomposition, semi-supervised feature engineering, ensemble learning and deep learning. Moreover, the system pioneers the use of self-supervised learning for filling in complex missing data, contributing to its originality and effectiveness.

Publisher

Emerald

Reference33 articles.

1. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting;Neurocomputing,2016

2. Why do tree-based models still outperform deep learning on tabular data?;Advances in Neural Information Processing Systems,2022

3. How does coal price drive up inflation? Reexamining the relationship between coal price and general price level in China;Energy Economics,2016

4. Energy price prediction using data-driven models: a decade review;Computer Science Review,2021

5. A new crude oil price forecasting model based on variational mode decomposition;Knowledge-Based Systems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3