Bootstrap beta control chart for monitoring proportion data

Author:

Chowdhury ShovanORCID,Kundu Amarjit,Modok Bidhan

Abstract

PurposeAs an alternative to the standard p and np charts along with their various modifications, beta control charts are used in the literature for monitoring proportion data. These charts in general use average of proportions to set up the control limits assuming in-control parameters known. The purpose of the paper is to propose a control chart for detecting shift(s) in the percentiles of a beta distributed process monitoring scheme when in-control parameters are unknown. Such situations arise when specific percentile of proportion of conforming or non-conforming units is the quality parameter of interest.Design/methodology/approachParametric bootstrap method is used to develop the control chart for monitoring percentiles of a beta distributed process when in-control parameters are unknown. Extensive Monte Carlo simulations are conducted for various combinations of percentiles, false-alarm rates and sample sizes to evaluate the in-control performance of the proposed bootstrap control charts in terms of average run lengths (ARL). The out-of-control behavior and performance of the proposed bootstrap percentile chart is thoroughly investigated for several choices of shifts in the parameters of beta distribution. The proposed chart is finally applied to two skewed data sets for illustration.FindingsThe simulated values of in-control ARL are found to be closer to the theoretical results implying that the proposed chart for percentiles performs well with both positively and negatively skewed data. Also, the out-of-control ARL values for the percentiles decrease sharply with both downward and upward small, medium and large shifts in the parameters. The phenomenon indicates that the chart is effective in detecting shifts in the parameters. However, the speed of detection of shifts varies depending on the type of shift, the parameters and the percentile being considered. The proposed chart is found to be effective in comparison to the Shewhart-type chart and bootstrap-based unit gamma chart.Originality/valueIt is worthwhile to mention that the beta control charts proposed in the literature use average of proportion to set up the control limits. However, in practice, specific percentile of proportion of conforming or non-conforming items should be more useful as the quality parameter of interest than average. To the best of our knowledge, no research addresses beta control chart for percentiles of proportion in the literature. Moreover, the proposed control chart assumes in-control parameters to be unknown, and hence captures additional variability introduced into the monitoring scheme through parameter estimation. In this sense, the proposed chart is original and unique.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference33 articles.

1. Model selection criteria in beta regression with varying dispersion;Communications in Statistics - Simulation and Computation,2017

2. Beta regression control chart for monitoring fractions and proportions;Computers and Industrial Engineering,2018

3. A compound control chart for monitoring and controlling high quality processes;European Journal of Operational Research,2014

4. An improved p chart through simple adjustment;Journal of Quality Technology,1998

5. Control charts for generalized exponential distribution percentiles;Communications in Statistics-Simulation and Computation,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shewhart-EWMA chart for monitoring binomial data subject to shifts of random amounts;Computers & Industrial Engineering;2024-07

2. On the performance of two-sided EWMA charts in the monitoring of continuous proportions;Communications in Statistics - Simulation and Computation;2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3