Analysis of two phase flow in liquid oxygen hybrid journal bearings for rocket engine turbopumps

Author:

Guoyuan Zhang,Xiu-Tian Yan

Abstract

Purpose – A hybrid bearing of advanced cryogenic rocket engine turbopump is designed. For cryogenic fluid propellants (such as liquid oxygen) as the lubrication of bearing, bearings operating close to liquid-vapor region (near the critical point or slightly sub-cooled) are likely to develop a two phase flow region. The paper aims to discuss these issues. Design/methodology/approach – In this paper, an all liquid, liquid-vapor mixture, and all vapor, i.e. a continuous vaporization bulk flow model of density and viscosity for mixture fluid, is presented, and the general Reynolds equation and energy equation with two phase flow as lubricants is solved. The static and dynamic performance of a 50-mm-radius hybrid bearing are obtained under 20,000 rpm speed and 10 MPa supply pressure. Findings – The results show that the variations of performance of bearing operating under cryogenic liquid oxygen are not bounded by the all liquid and all vapor cases in the liquid-vapor mixture range. There behaviours are attributed to the large change in the compressibility character of the flow. Research limitations/implications – For validating the correctness of analytical model, an experimental study on the liquid-vapor nitrogen mixture lubricated hybrid journal bearings is being carried out where low-viscosity nitrogen was selected as the lubricant for the sake of safety. Soon after, the authors will discuss the results and publish them in the new papers. Originality/value – An all liquid, liquid-vapor mixture, and all vapor, i.e. a continuous vaporization bulk flow model of density and viscosity for mixture fluid, is presented. The static and dynamic performance of hybrid bearings with two phase flow as lubricants are obtained.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference12 articles.

1. Chammiprasart, K. (1992), “A theoretical model of hydrodynamic lubrication with bubbly oil”, PhD dissertation, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA.

2. Khonsari, C.J.A. (1987), “A review of thermal effects in hydrodynamic bearings: part I – slider and thrust bearings; part II – journal bearings”, ASLE Transactions, Vol. 30 No. 1, pp. 19-33.

3. Look, D. and Sauer, H. (1986), Engineering Thermo-Dynamic, PWS Publishers, Boston, MA.

4. Mcadams, W.H. , Woods, W.K. and Heroman, L.C. (1942), “Vaporization inside horizontal tubes-II-benzene-oil mixtures”, ASME Trans., Vol. 64, p. -.

5. Pinkus, O. (1990), Thermal Effects in Fluid Film Tribology, ASME Press, New York, NY.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3