Fractal model of thermal contact conductance of two spherical joint surfaces considering friction coefficient

Author:

Sun Xianguang,Meng Chunxiao,Duan Tiantang

Abstract

Purpose The purpose of this study is to propose a fractal model of thermal contact conductance (TCC) of two spherical joint surfaces, considering friction coefficient based on the three-dimensional fractal theory. Design/methodology/approach The effects of friction coefficient, fractal parameters, radius of curvature and contact type on TCC were analyzed using numerical simulation. Findings The results indicate that the TCC decreases with the increase of friction coefficient and fractal roughness and increases with the increase of fractal dimension and radius of curvature; the contact type of two spherical joint surfaces has an important influence on the TCC, and the TCC of external contact is smaller than that of internal contact under the same contact load. Originality/value A fractal model of TCC of two spherical joint surfaces considering friction coefficient is proposed in this paper. Achievements of this work provide some theoretical basis for the research of TCC of bearings and other curved surfaces.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference24 articles.

1. Thermal contact conductance of elastically deforming nominally flat surfaces using fractal geometry;Industrial Lubrication and Tribology,2013

2. Using metallic coatings to enhance thermal contact conductance of electronic packages;Heat Transfer Engineering,1988

3. Research on fractal model of normal contact stiffness between two spheroidal joint surfaces considering friction factor;Tribology International,2016

4. Research on continuous smooth exponential model of elastic-plastic contact and normal contact stiffness of rough surface;Journal of Xi’an Jiaotong University,2016

5. Thermal contact conductance;International Journal of Heat and Mass Transfer,1969

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3