How does fear spread across asset classes? Evidence from quantile connectedness

Author:

Fousekis Panos

Abstract

Purpose This study aims to investigate the connectivity among four principal implied volatility (“fear”) markets in the USA. Design/methodology/approach The empirical analysis relies on daily data (“fear gauge indices”) for the period 2017–2023 and the quantile vector autoregressive (QVAR) approach that allows connectivity (that is, the network topology of interrelated markets) to be quantile-dependent and time-varying. Findings Extreme increases in fear are transmitted with higher intensity relative to extreme decreases in it. The implied volatility markets for gold and for stocks are the main risk connectors in the network and also net transmitters of shocks to the implied volatility markets for crude oil and for the euro-dollar exchange rate. Major events such as the COVID-19 pandemic and the war in Ukraine increase connectivity; this increase, however, is likely to be more pronounced at the median than the extremes of the joint distribution of the four fear indices. Originality/value This is the first work that uses the QVAR approach to implied volatility markets. The empirical results provide useful insights into how fear spreads across stock and commodities markets, something that is important for risk management, option pricing and forecasting.

Publisher

Emerald

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3