Author:
Ahangar Asr Alireza,Faramarzi Asaad,Javadi Akbar A.
Abstract
Purpose
This paper aims to develop a unified framework for modelling triaxial deviator stress – axial strain and volumetric strain – axial strain behaviour of granular soils with the ability to predict the entire stress paths, incrementally, point by point, in deviator stress versus axial strain and volumetric strain versus axial strain spaces using an evolutionary-based technique based on a comprehensive set of data directly measured from triaxial tests without pre-processing. In total, 177 triaxial test results acquired from literature were used to develop and validate the models. Models aimed to not only be capable of capturing and generalising the complicated behaviour of soils but also explicitly remain consistent with expert knowledge available for such behaviour.
Design/methodology/approach
Evolutionary polynomial regression (EPR) was used to develop models to predict stress – axial strain and volumetric strain – axial strain behaviour of granular soils. EPR integrates numerical and symbolic regression to perform EPR. The strategy uses polynomial structures to take advantage of favourable mathematical properties. EPR is a two-stage technique for constructing symbolic models. It initially implements evolutionary search for exponents of polynomial expressions using a genetic algorithm (GA) engine to find the best form of function structure; second, it performs a least squares regression to find adjustable parameters, for each combination of inputs (terms in the polynomial structure).
Findings
EPR-based models were capable of generalising the training to predict the behaviour of granular soils under conditions that have not been previously seen by EPR in the training stage. It was shown that the proposed EPR models outperformed ANN and provided closer predictions to the experimental data cases. The entire stress paths for the shearing behaviour of granular soils using developed model predictions were created with very good accuracy despite error accumulation. Parametric study results revealed the consistency of developed model predictions, considering roles of various contributing parameters, with physical and engineering understandings of the shearing behaviour of granular soils.
Originality/value
In this paper, an evolutionary-based data-mining method was implemented to develop a novel unified framework to model the complicated stress-strain behaviour of saturated granular soils. The proposed methodology overcomes the drawbacks of artificial neural network-based models with black box nature by developing accurate, explicit, structured and user-friendly polynomial models and enabling the expert user to obtain a clear understanding of the system.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference25 articles.
1. Air losses in compressed air tunnelling: a prediction model,2016
2. Stress-strain modeling of sands using artificial neural networks;Journal of Geotechnical Engineering, ASCE,1995
3. Erzin, Y. (2004), “Strength of different anatolian sands in wedge shear, triaxial shear, and shear box tests”, PhD thesis, The Middle East Technical University.
4. Autoprogressive training of neural network constitutive models;International Journal for Numerical Methods in Engineering,1998
5. A symbolic data-driven technique based on evolutionary polynomial regression;Journal of Hydroinformatics,2006
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献