Electrical, morphological, optical and mathematical simulations equations studies in CAZO, CZO, AZO and ZNO films

Author:

Dalouji Vali,Rahimi Nasim

Abstract

Purpose In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they become distinguishable. By increasing temperature to 600°C, ZnO and CZO, CAZO and aluminum-doped zinc oxide (AZO) films particles became almost spherical. Due to high content of Cu in CZO target, and of Al in AZO target which was 5% weight ratio, doping plays a great role in the subject. Therefore, the annealing processing strongly affect the size and the shape of nanoparticles. Design/methodology/approach In this paper, the authors tried to study, in detail, nobel optical characterizations of ZnO films doped by transition metals in different annealing temperature. The authors found that the values of skin depth, optical density, electron–phonon interaction, steepness parameter, band tail width, direct and indirect carriers transitions and the dissipation factor, free carriers density and roughness of films affect the optical properties, especially the optical absorptions of ZnO films doped by transition metals. Also these properties were affected by annealing temperatures. The authors also found that topography characterizations strongly were affected by these parameters. Findings The CZO films have maximum value of coordination number ß, with considering NC = 4, Za = 2, Ne = 8. The CZO films annealed at 500 °C have maximum value of optical density. The as-deposited CAZO films have maximum value of steepness parameters in about of 0.13 eV. The as-deposited AZO films have maximum value of dispersion energy Ed in about of 5.75 eV. Optical gap and disordering energy plots of films can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU, respectively. Originality/value With considering Nc = 4, Za = 2, Ne = 8 for ZnO films, coordination number ß has maximum value of 0.198. CZO nanocomposites films annealed at 500°C have maximum value of optical density. Different linear fitting of ln (α) for films were obtained as y = Ax + B where 5<A < 17 and 5<B < 12. As-deposited CAZO nanocomposites films have minimum value of electron phonon interaction in about of 4.91 eV. Optical gap and disordering energy plots can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU for as-deposited films and films annealed at 500°C, respectively. Steepness parameters of as-deposited CAZO nanocomposites films have maximum value of 0.13 eV. Dispersion energy Ed for as-deposited AZO nanocomposites films has maximum value of 5.75 eV.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference52 articles.

1. Bio-inspired fabrication of ZnO nanorod arrays and their optical and photoresponse properties;Journal of Crystal Growth,2007

2. Effect of potential voltages on key functional properties of transparent AZO thin films prepared by electrochemical deposition method for optoelectronic applications;Journal of Materials Research,2018

3. Effect of rapid thermal annealing on structural and optical properties of ZnS thin films fabricated by RF magnetron sputtering technique;Theoretical and Applied Physics,2019

4. Porous ZnS/ZnO microspheres prepared through the spontaneous organization of nanoparticles and their application as supports of holding CdTe quantum dots;Materials Research Bulletin,2008

5. Comprehensive semiconductor science and technology;Mathematical Modeling, and Materials Design and Optimization,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3