Forecast of stock price fluctuation based on the perspective of volume information in stock and exchange market

Author:

Chen Shoudong,Sun Yan-lin,Liu Yang

Abstract

Purpose In the process of discussing the relationship between volume and price in the stock market, the purpose of this paper is to consider how to take the flow of foreign capital into consideration, to determine whether the inclusion of volume information really contributes to the prediction of the volatility of the stock price. Design/methodology/approach By comparing the relative advantages and disadvantages of the two main non-parametric methods mainstream, and taking the characteristics of the time series of the volume into consideration, the stochastic volatility with Volume (SV-VOL) model based on the APF-LW simulation method is used in the end, to explore and implement a more efficient estimation algorithm. And the volume is incorporated into the model for submersible quantization, by which the problem of insufficient use of volume information in previous research has been solved, which means that the development of the SV model is realized. Findings Through the Sequential Monte Carlo (SMC) algorithm, the effective estimation of the SV-VOL model is realized by programming. It is found that the stock market volume information is helpful to the prediction of the volatility of the stock price. The exchange market volume information affects the stock returns and the price-volume relationship, which is achieved indirectly through the net capital into stock market. The current exchange devaluation and fluctuation are not conducive to the restoration and recovery of the stock market. Research limitations/implications It is still in the exploratory stage that whether the inclusion of volume information really contributes to the prediction of the volatility of the stock price, and how to incorporate the exchange market volume information. This paper tries to determine the information weight of the exchange market volume according to the direct and indirect channels from the perspective of causality. The relevant practices and conclusions need to be tested and perfected. Practical implications Previous studies have neglected the influence of the information contained in the exchange market volume on the volatility of stock prices. To a certain extent, this research makes a useful supplement to the existing research, especially in the aspects of research problems, research paradigms, research methods and research conclusion. Originality/value SV model with volume information can not only effectively solve the inefficiency of information use problem contained in volume in traditional practice, but also further improve the estimation accuracy of the model by introducing the exchange market volume information into the model through weighted processing, which is a useful supplement to the existing literature. The SMC algorithm realized by programming is helpful to the further advancement and development of non-parametric algorithms. And this paper has made a useful attempt to determine the weight of the exchange market volume information, and some useful conclusions are drawn.

Publisher

Emerald

Subject

Finance

Reference36 articles.

1. Abanto-Valle, C.A., Dipak, K.D. and Lachos, V.H. (2014), “Stock return volatility, heavy tails, skewness and trading volume: a Bayesian approach”, working paper, Federal University of Rio de Janeiro, Rio De Janeiro, pp. 1-29.

2. Bayesian modeling of financial returns: a relationship between volatility and trading volume;Applied Stochastic Models in Business and Industry,2010

3. Return volatility and trading volume: an information flow interpretation of stochastic volatility;The Journal of Finance,1996

4. Simulation-based sequential analysis of Markov switching stochastic volatility models;Computational Statistics & Data Analysis,2007

5. Information spillover effects between RMB exchange rate and Sino-US stock markets: an empirical study based on endogenous structural break;Economic Review,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3