Feedback trading in global stock markets under uncertainty of COVID-19

Author:

Coşkun Esra AlpORCID

Abstract

PurposeAlthough some research has been carried out on feedback trading in different asset classes, there have been few empirical investigations that consider both major and emerging stock markets (Koutmos, 1997; Antoniou et al., 2005; Kim, 2009) stock index futures (Salm and Schuppli, 2010). In this study, the author examines positive/negative feedback trading in both developed-emerging-frontier-standalone (51) stock markets for 2010–2020 and sub-periods including COVID-19 period.Design/methodology/approachThe hypothesis “feedback trading behaviour led the price boom/bust in the stock markets during the first quarter of COVID-19 pandemic” is tested by employing the Sentana and Wadhwani (1992) framework and using asymmetrical GARCH models (GJRGARCH, EGARCH) in accordance with the empirical literature.FindingsThe following conclusions can be drawn from the present study; (1) There is no evidence to support a significant distinction between developed, emerging, frontier or standalone markets or high/upper middle, lower middle income economies in the case of feedback trading. It is more likely to be a general phenomenon reflecting the outcomes of general human psychology (2) in the long term (2010–2020) based on the feedback trading results Asian stock markets appear to be far from efficiency.Research limitations/implicationsStock markets are selected based on data availability.Practical implicationsSeveral inferences can be drawn about overall results. First, investors and portfolio managers should beware of their investment decisions during bearish market conditions where volatility is on the rise and also when there is a strong reaction to bad news/negative shocks in the market. Moreover, investing in Asia stock markets may require more attention since those markets are reputed to be more “idiosyncratic”, less reliant on economic and corporate fundamentals in their pricing. Moreover, the impact of foreign investors on stock market volatility and returns and weaker implementation of regulations also affect the efficiency of the markets (Lipinsky and Ong, 2014).Originality/valueTo the best of the author’s knowledge, most studies in the field of feedback trading in stock markets have only focused on a small sample of countries and second, the effect of COVID-19 uncertainty on the stock markets have not been addressed in the literature with respect to feedback trading. This paper fills these literature gaps. This study is expected to provide useful insights for understanding the instabilities in stock markets particularly under conditions of high uncertainty and to fill the gap in the literature by comparing the results for a large sample of countries both in the long term and in the pandemic.Highlights for reviewThis study has shown that feedback trading is more prevalent in Asian stock markets in the long run in Europe, America or Middle East for the period 2010–2020.Positive feedback traders generally dominated most of the stock markets during the early period of COVID-19 pandemic.Another major finding was that the stock markets in Malaysia, Japan, the Philippines, Estonia, Portugal and Ukraine are dominated by negative feedback traders which may be interpreted as “disposition effect” meaning that they sell the “past winners”.In Indonesia, New Zealand, China, Austria, Greece, UK, Finland, Spain, Iceland, Norway, Switzerland, Poland, Turkey, Chile and Argentina neither positive nor negative feedback trading exists even under uncertain conditions.

Publisher

Emerald

Subject

Strategy and Management,Finance,Accounting

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3