Abstract
Purpose
The purpose of this study is to present a hybrid approach to model and predict long-term energy peak load using Bayesian and Holt–Winters (HW) exponential smoothing techniques.
Design/methodology/approach
Bayesian inference is administered by Markov chain Monte Carlo (MCMC) sampling techniques. Machine learning tools are used to calibrate the values of the HW model parameters. Hybridization is conducted to reduce modeling uncertainty. The technique is applied to real load data. Monthly peak load forecasts are calculated as weighted averages of HW and MCMC estimates. Mean absolute percentage error and the coefficient of determination (R2) indices are used to evaluate forecasts.
Findings
The developed hybrid methodology offers advantages over both individual combined techniques and reveals more accurate and impressive results with R2 above 0.97. The new technique can be used to assist energy networks in planning and implementing production projects that can ensure access to reliable and modern energy services to meet the sustainable development goal in this sector.
Originality/value
This is original research.
Subject
Strategy and Management,General Energy
Reference47 articles.
1. Electric load forecasting: literature survey and classification of methods;International Journal of Systems Science,2002
2. A methodology for electric power load forecasting;Alexandria Engineering Journal,2011
3. Bayesian modeling and forecasting of intraday electricity load;Journal of the American Statistical Association,2003
4. Advancement of statistical based modeling for short-term load forecasting;Electric Power Systems Research,1995
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献