Effect of shape imperfections on elastic stresses of U-bends subjected to in-plane moment

Author:

Krishna L.A.,Veerappan A.R.,Shanmugam S.

Abstract

PurposePrecise assessment of elastic stress is required in the field of fracture mechanics. While bending a straight pipe, the deformation of the circular cross section out of roundness called ovality and thinning are foreseeable. The ovality has a significant effect on the structural integrity of the pipe. The sole objective of this paper is to provide new analytical solutions to predict accurate elastic stress distribution at the median section of the U-bend, with deformities such as ovality and thinning when subjected to in-plane closing moment by using elastic finite element analysis.Design/methodology/approachThe quarter model of the U bend has been analysed by using ABAQUS. The elastic stress components included in this analysis are longitudinal bending stress, longitudinal membrane stress, circumferential bending stress and circumferential membrane stress. Based on finite element results, analytical elastic stress solutions are also provided for both longitudinal and circumferential stresses by using these stress components.FindingsAs the ovality has a significant effect, it is further included in the analytical solution. The thinning is not included since it has very little effect. Analytical stress solutions are provided for a wide range of bend characteristics to include ovality, mean radius and thickness.Originality/valueSignificance of ovality and thinning on elastic stress of U-bend has not been reported in the existing literature.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference43 articles.

1. Elastic stresses for 90˚ elbows under in-plane bending;International Journal of Mechanical Sciences,2011

2. Prediction of pipeline collapse due to hydrostatic pressure;International Journal of Structural Integrity,2019

3. Determination of ovality and wall thinning effects on B2 stress indices for pipe bends under in-plane closing bending moment;Simulation: Transactions of The Society for Modeling and Simulation International,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3