Exploring the development of context appreciation in coursework that targets problem-solving for sustainable development

Author:

Desha Cheryl,Caldera Savindi,Hutchinson Deanna

Abstract

Purpose This study aims to explore the role of planned, sudden shifts in lived experiences, in influencing learner capabilities towards improved problem-solving for sustainable development outcomes. The authors responded to employers of engineering and built environment graduates observing limited “real-life” problem-solving skills, beyond using established formulae and methods, in spite of attempts over more than two decades, to train engineers and other built environment disciplines in areas such as whole system design and sustainable design. Design/methodology/approach A grounded theory approach was used to guide the analysis of data collected through ethnographic methods. The process involved reflecting on authors’ efforts to develop context appreciation within a course called “International Engineering Practice”, using two years of collected data (archived course information, including course profile; completed assessment; lecture and field visit evaluations; and focus groups). The study is built on the authors’ working knowledge of Bloom’s Taxonomy and Threshold Learning Theory, and the well-established role of “context appreciation” in complex problem-solving. After the first iteration of the course, the authors looked for additional theoretical support to help explain findings. The Cynefin framework was subsequently used to augment the authors’ appreciation of “context” – beyond physical context to include relational context, and to evaluate students’ competency development across the four domains of “clear”, “complicated”, “complex” and “chaotic”. Findings This study helped the authors to understand that there was increased capacity of the students to distinguish between three important contexts for problem-solving, including an increased awareness about the importance of factual and relevant information, increased acknowledgement of the varying roles of professional practitioners in problem-solving depending on the type of problem and increased appreciation of the importance of interdisciplinary teams in tackling complex and complicated problems. There were several opportunities for such courses to be more effective in preparing students for dealing with “chaotic” situations that are prevalent in addressing the United Nations’ 17 sustainable development goals (UNSDGs). Drawing on the course-based learnings, the authors present a “context integration model” for developing problem-solving knowledge and skills. Research limitations/implications The research findings are important because context appreciation – including both physical context and relational context – is critical to problem-solving for the UNSDGs, including its 169 targets and 232 indicators. The research findings highlight the opportunity for the Cynefin framework to inform holistic curriculum renewal processes, enhancing an educator’s ability to design, implement and evaluate coursework that develops physical and relational context appreciation. Practical implications The study’s findings and context integration model can help educators develop the full range of necessary problem-solving graduate competencies, including for chaotic situations involving high degrees of uncertainty. Looking ahead, acknowledging the significant carbon footprint of global travel, the authors are interested in applying the model to a domestic and/or online format of the same course, to attempt similar learning outcomes. Originality/value Connecting Bloom’s taxonomy deep learning and threshold learning theory critical path learning insights with the Cynefin framework context domains, provides a novel model to evaluate competency development for problem-solving towards improved holistic physical and relational “context appreciation” outcomes.

Publisher

Emerald

Subject

Education,Human Factors and Ergonomics

Reference89 articles.

1. Double loop learning in organizations;Harvard Business Review,1977

2. Threshold concepts in engineering education-exploring potential blocks in student understanding;International Journal of Engineering Education,2006

3. Une responsabilité our l’enseignement supé rieur;Economie et Humanisme,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3