High temperature isothermal and cyclic oxidation behaviour of pure recycled titanium

Author:

Valdés-Saucedo Omar Alejandro,Vázquez-Rodríguez Liliana Judith,López-Zárate Brenda,Garza-Tovar Lorena,García-Gómez Nora Aleyda,Artigas Alfredo,Monsalve Alberto,Ramírez-Ramírez Javier H. Humberto,Pérez-González Francisco Aurelio,Colás Rafael,Garza-Montes-de-Oca Nelson Federico

Abstract

Purpose This paper aims to analyse the surface evolution of pure recycled titanium subjected to isothermal and cyclic oxidation conditions using dry air as oxidant gas. It is important to mention that the cyclic oxidation behaviour of pure titanium is a process that has been barely studied. Design/methodology/approach An isothermal and cyclic oxidation reactor was built for these purposes. This installation allows the oxidation of material under the action of any atmosphere and for temperatures up to 1,200°C. For this study, the oxidation behaviour of the material was studied at 850°C and 950°C. Findings Oxide growth under isothermal oxidation conditions in air follows a parabolic behaviour with an activation energy of 118 kJ/mol, and the oxide phase formed on the surface of the metal was rutile. The cyclic oxidation of the material indicates that oxide is spalled from the surface following linear behaviours; this phenomenon is controlled by the thermal stresses experienced by the samples during heating and cooling cycles. Originality/value The material is obtained from the production of electrolytic copper, and during its reprocessing practices at high temperature, it was thought that it could experience some abnormal oxidation. In addition, given that pure titanium is currently used for biomedical application, some surface degree can be given by means of oxidation and subsequent spallation process situation that is found during the cyclic oxidation experiments, which could be a low-cost method to engineer a surface for these purposes.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3