Guidelines for 3D printed springs using material extrusion

Author:

Enea Sacco,Moon Seung Ki

Abstract

Purpose Springs are an integral part of mechanisms and can benefit from additive manufacturing’s (AM) increased design freedom. Given the limited literature on the subject, the purpose of this paper is to develop guidelines for fabricating helical springs using three-dimensional (3D) printing. Design/methodology/approach Polylactic acid (PLA) is the main material investigated, with ULTEM™ 9085 used as a comparison. The experimental procedure is to vary the spring parameters, print the springs and test them in tension or compression using constant velocity. Plots of the force and displacement are used to measure the linear and post-deformation spring constants. Loading of the springs is done both to breakage and cyclically. Cyclic loading is also used to observe the plastic behaviour of the springs. Parameters that are varied include wire and coil diameters, pitch, wire cross-section, in-fill and layer height. Findings A square wire cross-section is used, instead of a circle because it produces more consistent coils. In-fills make no significant difference in the elastic stiffness of the springs but the mono in-fill breaks at a greater extension, so it is recommended. Tension and compression springs are confirmed to behave the same when in the elastic regime. ULTEM™ 9085 produces consistently weaker springs compared to PLA. Variation of layer height shows that thinner layers increase the stiffness of the springs. Originality/value This study investigates the behaviour of 3D printed helical springs in tension and compression. Three guidelines are created: square wire cross-section, mono-directional in-fill and thin layers are recommended.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference23 articles.

1. Effects of part build orientations on fatigue behaviour of fdm-processed pla material;Progress in Additive Manufacturing,2016

2. Predicting strength of additively manufactured thermoplastic polymer parts produced using material extrusion;Rapid Prototyping Journal,2018

3. Strength and strain hardening of a selective laser melted AlSi10Mg alloy;Scripta Materialia,2017

4. Saint-Venant torsion of anisotropic shafts: theoretical frameworks, extremal bounds and affine transformations;The Quarterly Journal of Mechanics and Applied Mathematics,2005

5. Additive manufacturing of non-assembly mechanisms;Additive Manufacturing,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3