A framework for big data driven process analysis and optimization for additive manufacturing

Author:

Majeed Arfan,Lv Jingxiang,Peng Tao

Abstract

Purpose This paper aims to present an overall framework of big data-based analytics to optimize the production performance of additive manufacturing (AM) process. Design/methodology/approach Four components, namely, big data application, big data sensing and acquisition, big data processing and storage, model establishing, data mining and process optimization were presented to comprise the framework. Key technologies including the big data acquisition and integration, big data mining and knowledge sharing mechanism were developed for the big data analytics for AM. Findings The presented framework was demonstrated by an application scenario from a company of three-dimensional printing solutions. The results show that the proposed framework benefited customers, manufacturers, environment and even all aspects of manufacturing phase. Research limitations/implications This study only proposed a framework, and did not include the realization of the algorithm for data analysis, such as association, classification and clustering. Practical implications The proposed framework can be used to optimize the quality, energy consumption and production efficiency of the AM process. Originality/value This paper introduces the concept of big data in the field of AM. The proposed framework can be used to make better decisions based on the big data during manufacturing process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference58 articles.

1. Industry 4.0 and the U.S. Manufacturing renaissance;Audio-Tech Business Book Summaries, Inc,2015

2. A novel 3D printing method for cell alignment and differentiation;International Journal of Bioprinting,2015

3. Big Data’s Role in 3D Printing – techvibes.com/2016/07/29/big-data-3d-printing

4. Big data: a survey;Mobile Networks and Applications,2014

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3